

ECCU 2017 CONFERENCE & EXHIBITION • A CALL TO ACTION...AND ALL THAT JAZZ!

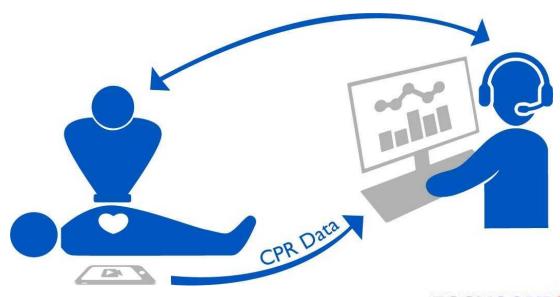
CPR Measurement and Feedback by Smartphone Camera

Øyvind Meinich-Bache, Tonje Søraas Birkenes, Helge Myklebust, Kjersti Engan

Disclosure Information

Øyvind Meinich-Bache (presenter) and Kjersti Engan are employees of the University of Stavanger and Tonje Søraas Birkenes and Helge Myklebust are employees of Laerdal Medical.

FINANCIAL DISCLOSURE:


 Laerdal Medical and the University of Stavanger has financed this study.

CPR Measurement and Feedback by Smartphone Camera

- 1. Establish telephone connection with the emergency unit
- 2. Measure the CPR quality
- 3. Provide real-time feedback to bystander and dispatcher
- 4. Estimate CPR summary parameters

Motivation

- Good quality CPR save lives
- Telephone assisted CPR and objective feedback improves CPR quality

CPR measurement devices

Others:

Require the device to be placed on the patient's chest or strapped to bystander's arm

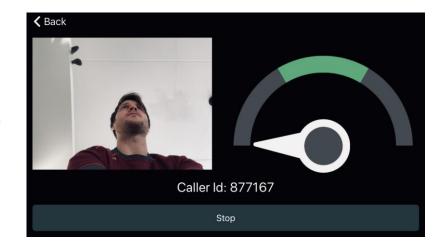
Us:

Using the camera allows the smarthpone to be placed flat on ground

→ more suited for real emergencies

TCPR Link video:

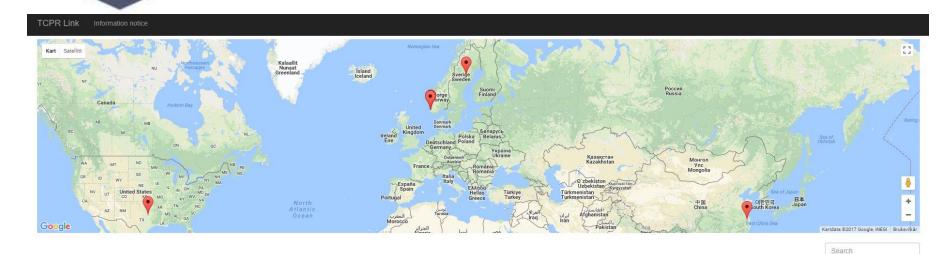
https://www.youtube.com/watch?v=EB_Xn3J


WXgE

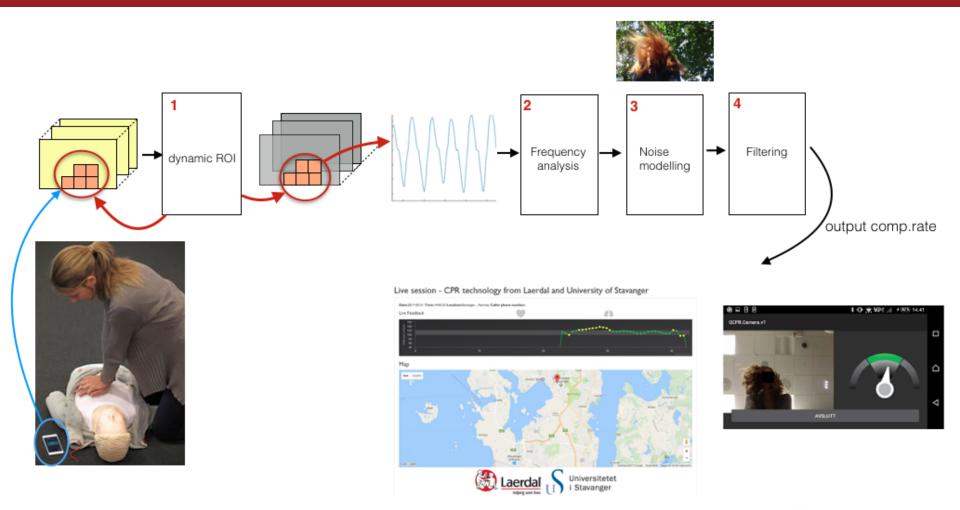
Smartphone application

Webserver

Map

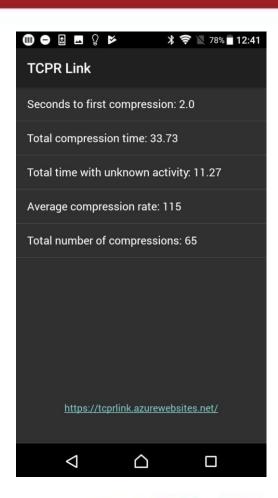


Webserver



Phone Number	ld	Location Select	Date	Export
	837700	Klepp, Rogaland, Norway	12/01/2017 12:21	Export session as CSV
	744749	Stavanger, Rogaland, Norway	12/01/2017 12:20	Export session as CSV
	744749	Stavanger, Rogaland, Norway	12/01/2017 12:19	Export session as CSV
	837700	Klepp, Rogaland, Norway	12/01/2017 12:18	Export session as CSV
	744749	Stavanger, Rogaland, Norway	12/01/2017 12:17	Export session as CSV
	744749	Stavanger, Rogaland, Norway	12/01/2017 12:17	Export session as CSV
	744749	Stavanger, Rogaland, Norway	12/01/2017 12:02	Export session as CSV
	744749	Stavanger, Rogaland, Norway	12/01/2017 12:01	Export session as CSV
	744749	Stavanger, Rogaland, Norway	12/01/2017 12:01	Export session as CSV
	744749	Stavanger, Rogaland, Norway	12/01/2017 12:01	Export session as CSV

Method


1. Meinich-Bache \emptyset , Engan K, Birkenes TS, Myklebust H. Robust real-time chest compression rate detection from smartphone video.

CPR summary report

- 1. Time to first compression
- 2. Total compression time
- 3. Time without compressions
- 4. Average compression rate
- 5. Total number of compressions

Test Validity (9 tests)

1) Different hair lengths, short, med., long

- 2) 60, 100, 120 and 150 cpm
- 3) Low lighting

- 4) 30:2 sessions
- 5) Outdoor

6) Disturbance

7) Smartphone positions

- 8) Random movement
- 9) CPR summary parameter test

Results

Mean Error, ME, - (|detection-reference|)

Hair lengths (short, med., long) and compression rates (60,100,120 an 150) :

ME = 1.3 cpm (n=7)

Low light:

ME = 1.1 cpm (n=7)

Disturbance test:

ME = 1.8 cpm (n=7)

Outdoor test:

ME = 1.4 cpm (n=3)

30:2 sessions:

ME = 3.9 cpm (n=7)

Phone position far away:

ME = 7.2 cpm (n=7)

Results

Performance, P (amount of time without false detections)

Random movement test

(n=3)

Relative Error, RE
$$\left(\frac{Detection-Reference}{Reference}\right)$$

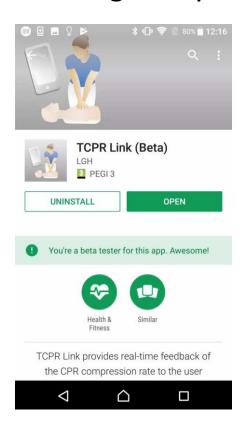
CPR summary parameters:

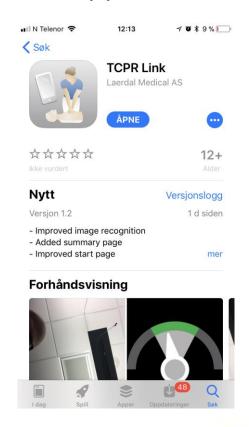
Time to first compression	RE = <u>6.1</u> %	(n=5)
Total compression time	RE = 2.8 %	(n=5)
Time without compressions	RE = 10.0 %	(n=5)
Average compression rate	RE = 1.8 %	(n=5)
Total number of compressions	RE = 1.6 %	(n=5)

Discussion and Conclusion

Good detection results under the conditions tested

 Both the bystander's head and shoulders should be included in the image frame


- Future work:
 - The application should be tested in simulated emergencies
 - Investigate the system's effect on the CPR quality



TCPR link

Google Play

App Store

TCPR Link workshop:

https://www.youtube.com/watch?v=jD9y

7gOElpY

Contact:

oyvind.meinich-bache@uis.no tonje.birkenes@laerdal.com helge.myklebust@laerdal.com

- Thank you for your time!
- Questions?

